organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xin-Gang Liu,^a Ya-Qing Feng,^a* Xiang-Qi Meng,^a Zu-Pei Liang^b and Guang Yang^a

^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ^bSchool of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China

Correspondence e-mail: xingangl2002@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.046 wR factor = 0.129 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(E)-4-[(4-Hydroxyphenyl)diazenyl]benzaldehyde

The title compound, $C_{13}H_{10}N_2O_2$, is approximately planar in the solid state and displays a *trans* configuration with respect to the azo double bond. Molecules form infinite chains linked by $O-H\cdots O$ hydrogen bonds along the *a* axis.

Received 3 May 2005 Accepted 6 May 2005 Online 14 May 2005

Comment

Azo compounds are widely utilized as dyes and indicators in chemistry and as stains in the biological field (Kumar & Neckers, 1989). Moreover, azobenzene and some azobenzene derivatives can undergo *cis-trans* isomerization under photochemical stimulation and may be involved in energy-transfer processes (Murakami *et al.*, 1997). We report here the synthesis and structure of the title compound, (I) (Fig. 1).

The molecule is approximately planar, with a mean deviation 0.026 (2) Å from the molecular plane. The dihedral angle between the planes of the two aromatic rings is 1.5 (3)°. Moreover, the title compound displays the expected *trans* configuration with respect to the azo double bond. $O-H\cdots O$ hydrogen bonds involving O atoms at either end of the molecule result in the formation of polymeric chains of molecules along the *a* axis (Figs. 2 and 3, and Table 1).

Experimental

Sodium nitrite (5 mmol) in water (10 ml) was added dropwise to 4-aminobenzaldehyde (4 mmol) dispersed in concentrated HCl (2 ml) at 273–278 K and the mixture stirred for 30 m. The resulting solution was added dropwise to Na_2CO_3 (10 mmol) and phenol (5 mmol) in water (40 ml) and stirred for 30 min. The red–orange

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The molecular structure of (I), with atom labels and 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii.

The crystal packing, viewed along the *a* axis, showing the polymeric chains.

precipitate of (I) was filtered and washed with water. ¹H NMR (CDCl₃): δ 5.21 (s, 1H), 6.97–6.99 (d, 2H), 7.92–8.05 (m, 6H), 10.10 (s 1H). Recrystallization from acetone over 10 d at ambient temperature gave colourless single crystals of (I).

Crystal data

$C_{13}H_{10}N_2O_2$	$D_x = 1.383 \text{ Mg m}^{-3}$
$M_r = 226.23$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 1178
a = 6.405 (2) Å	reflections
$b = 25.820 (9) \text{\AA}$	$\theta = 3.2 - 23.6^{\circ}$
c = 7.197(2) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 114.140~(6)^{\circ}$	T = 293 (2) K
V = 1086.2 (6) Å ³	Block, colourless
Z = 4	0.20 \times 0.14 \times 0.08 mm
Data collection	
Bruker SMART CCD area-detector	2206 independent reflections
diffractometer	1083 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.046$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Bruker, 1997)	$h = -7 \rightarrow 7$

 $k = -32 \rightarrow 31$

 $l = -8 \rightarrow 5$

 $O-H \cdots O$ hydrogen bonds (dashed lines), forming polymeric chains.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0)]$
$R[F^2 > 2\sigma(F^2)] = 0.046$	+ 0.0666P]
$wR(F^2) = 0.129$	where $P = (F_o^2 + f_o^2)$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
2206 reflections	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
158 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-2}$
H atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots O2^i$	0.91 (3)	1.80 (3)	2.711 (3)	176 (3)
Symmetry code: (i) 1	$-x, y - \frac{1}{2}, \frac{3}{2} - z.$			

The hydroxy H atom was located in a difference map and its coordinates and isotropic displacement parameter were freely refined. Other H atoms were positioned geometrically (C-H = 0.93 Å) and refined with a riding model, $U_{iso}(H) = 1.2U_{eq}(carrier)$.

 $T_{\rm min} = 0.972, \ T_{\rm max} = 0.991$

6049 measured reflections

 $+ (0.0555P)^2$

 $(F_o^2 + 2F_c^2)/3$

organic papers

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation (grant No. 20376059) and the National HighTechnology Research and Development Programme of China (863 Programme) (grant No. 2002AA325050)

References

- Kumar, G. S. & Neckers, D. C. (1989). Chem. Rev. 89, 1915-1925.
- Murakami, H., Kawabuchi, A., Kotoo, K., Kunitake, M. & Nakashima, N. (1997). J. Am. Chem. Soc. 119, 7605–7606.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.